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ABSTRACT

In a companion paper local transfer functions were estimated at Tecoman using earthquake and 

microtremor data. In this paper the subsoil structure at this city is investigated using seismic 

refraction and cross-correlation of noise records. P- and S-wave refraction profiles were 

measured at five sites within the city. Standard analysis constrained only very shallow layers. The 

P-wave refraction deployment was also used to record ambient vibration. These data were 

processed using an extension of the SPAC method; cross-correlation is computed between station 

pairs and the results are inverted to obtain a phase velocity dispersion curve. Penetration depth 

was larger than that from the refraction experiments but the shear-wave velocity of the basement 

could not be determined. For this reason, additional microtremor measurements were made using 

broad band seismometers with a larger spacing between stations. The results allowed to constrain 

the shear-wave velocity of the basement. Site amplification computed for the final profiles 

compare well with observed ground motion amplification at Tecoman. The case of Tecoman 

illustrates that even a simple subsoil structure may require crossing data from different 

experiments to correctly constrain site effects.

keywords: subsoil exploration, seismic refraction, microtremors, SPAC method
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1. Introduction

The relevance of site effects for ground motion prediction is well established. Ground 

motion amplification due to the surficial soft soils frequently conditions damage distribution 

during large earthquakes. We may classify approaches to site effects into two categories [1]. In 

the first approach, a local transfer function is estimated based usually on earthquake data. In the 

last 30 years, the analysis of ambient vibration with the purpose of estimating a local 

amplification transfer function has also gained much popularity, especially based on the use of 

horizontal-to-vertical spectral ratios (e.g., [2,3]). The second approach is based on numerical 

modeling. If we are able to determine the subsoil structure (its geometry and mechanical 

properties), its effect on ground motion may be computed using numerical simulation of wave 

propagation. Naturally, when we are able to compare empirical site effect estimates with results 

from numerical modeling, the reliability of the results is greatly enhanced.

In a companion paper [4] we presented a site effect study in the city of Tecoman, a small 

city in Mexico, located close to the northern end of the subduction zone along the Mexican 

Pacific coast. In that paper, local amplification due to soft soils was evaluated using both 

earthquake data and ambient vibration records. The comparison of the results from different types 

of data and different kinds of measurement instruments provided a reliable estimate of the local 

amplification in the city. In this paper, we present a complementary study, centered on the 

exploration of the subsoil structure in Tecoman. Using an exploration seismograph, we recorded 

refraction profiles with hammer blows as a source at five sites within the city. Both P- and S-

wave refraction profiles were measured. The records we processed using standard techniques and 

Vp and Vs profiles were derived for each site. In addition, ambient vibration was recorded using 

the P-wave refraction profiles. These noise records were analysed using a recently proposed 
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extension of the SPAC method where a Vs profile is inverted from phase velocity dispersion 

curves. The results provided a reliable estimate of shallow subsoil structure under Tecoman. 

However, site amplification requires knowledge of both soft soil properties and basement shear-

wave velocity. The small apertures used and the high frequency of the geophones precluded the 

determination of the structure below the soft sediments. Ambient vibration measurements, using 

a larger aperture array with autonomous seismographs, were necessary to completely constrain 

the subsoil structure. Using the complete structure, computed site effects are in good agreement 

with observed local amplification.

2. Data and techniques of analysis

In our companion paper [4], we introduced the city of Tecoman (Figure 1). It is located on 

the coastal plane, close to the Pacific coast in Mexico, where the two most recent large Mexican 

earthquakes have occurred [5,6]. The data analysed in this paper were recorded at Tecoman using 

two different types of measurements. In the first place, we used a Geometrics, 24-channel seismic 

refraction seismograph to explore shallow subsoil structure. 4.5 Hz vertical and horizontal 

geophones were used at five sites within the city (Figure 2). At each site, three different 

measurements were made. The first was a standard P-wave refraction test. Vertical geophone 

spacing and source offset were 4 m. The source was hammer blows on a steel plate placed on the 

ground. Five blows were stacked by the seismograph. The second experiment was an S-wave 

refraction profile. The spacing between horizontal geophones and the offset were decreased to 2 

m. The source was lateral blows on a wooden beam, pressed to the ground by the weight of the 

front axis of our vehicle. Again, five blows were stacked by the seismograph. In the case of the S-
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waves, we measured two profiles hitting the beam on two sides. Thus, S-wave polarity was 

inverted and the identification of the first arrival of shear waves in the seismograms was 

facilitated. Finally, we used the P-wave profile (92 m long) to record ambient vibration. At each 

site, five windows of 60 sec duration of ambient vibration were recorded, triggering the 

seismograph without a source.

The analysis of the data from the refraction seismograph was useful to constrain the 

shallow structure at the sites (see below). However, no information was retrieved from the 

underlying basement. For this reason, we also used ambient vibration records obtained using one 

of the arrays reported in our companion paper [4]. We used noise data recorded by six K2 

accelerographs by Kinemetrics coupled to CMG40 Guralp broad band seismometers, able to 

record faithfully ground velocity down to 0.03 Hz. The sites where these instruments were 

installed are shown in Figure 2. They do not coincide with the refraction experiment sites. The 

latter required an open field area, whereas the K2 needed to be installed in a secured place. The 

six K2 recorders were manually triggered and ambient vibration was recorded simultaneously 

during 8 hours. We analysed these data with the extension of the SPAC method described below.

The analysis of the P- and S-wave refraction data followed standard procedures. Travel 

times were inverted with a least squares method to determine possible lateral variations for each 

profile, using the software SeisImager/2D by Geometrics. First break analysis, however, showed 

strong limitations. In the case of P-waves, first arrivals could only be clearly identified for 

distances smaller than 54 m. In the case of S waves, this distance was reduced to 28 m. Thus, 

only velocities of layers shallower than 20 m could be determined.

The analysis of ambient vibration obtained wither with the refraction seismograph or with 

the autonomous accelerographs made recourse to the SPAC method [7], using its extension to 

two stations [8]. This method requires that the seismic noise be stationary in time and space and 
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that it consists mainly of surface waves. The use of the vertical component records allows us to 

ascribe our results to Rayleigh waves. It has been shown [7] that the average cross-correlation 

between two stations, computed in the frequency domain, takes the form of a Bessel function of 

first class and zero order. The argument of the Bessel function is the frequency multiplied by the 

distance between stations and divided by the phase velocity of the surface waves. Given that the 

only unknown is the phase velocity, we may compute cross-correlation between station pairs

using band-pass filtered noise records, and repeat that computation for many central frequencies 

of the filter. The resulting function may be inverted to obtain the phase velocity of Rayleigh at 

the central frequencies used for the band-pass filter. The method has been described in detail 

before [9, 10, 11]. The noise records obtained with the P-wave refraction profile described above 

were processed following closely [12].

During the analysis of the ambient vibration data recorded with the exploration 

seismograph, we tested window-lengths of different duration, from 10 to 60 sec. The shorter 

windows produced unreliable results for frequencies smaller than 3 Hz. Windows of 30 sec 

duration and larger produced stable results for frequencies larger than 2 Hz. This limit at small 

frequencies is the natural consequence of the small spacing between geophones (4 m) and of their

4.5 Hz eigen frequency. In fact, it is surprising that good results are obtained down to 2 Hz. At 

the other end, good results were obtained up to 10 Hz. Thus, ambient vibration measurements 

using the exploration seismograph contributed information on the shallow subsoil profile. For 

each site, we averaged all possible crosscorrelations at a fixed distance. For instance, the result 

for 4 m distance was obtained as the average of the crosscorrelation computed between all 

neighbouring geophones (23 station pairs for a 24 geophone profile) and for the five 60-sec 

recording windows. The final results were very stable.
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Two-station correlation was also used to process the data recorded by the six-station, K2 

array. The distances between stations are larger (between 620 m and 2.78 km) and the broad band

seismometers were able to record faithfully low frequencies. Thus, this second array was able to 

constrain Vs velocities in the basement below the soft sediments. At the same time, the aperture 

of the array and the small number of stations made it impossible to identify possible lateral 

variations of the subsoil structure. Thus, the results from the two different measurements usefully 

complemented each other.

3. Results

Figure 3 shows an example of seismic section, together with the Vs 2D profile derived 

from the measurements at P-Torres site. The top diagram shows one of the S-wave source 

refraction profiles at this site. The lower diagram shows the 2D structure derived from first break 

measurements. Soil structure consists of essentially flat layers. It is likely that the small lateral 

variations in thickness are in reality a reflection of small errors in picking S-wave arrival times. 

The weakness of the source signal, probably coupled to the strong attenuation expected in 

surficial sediments, limit clear arrivals to distances less than 28 m. As a result, Vs values can be 

defined only for the upper 20 m. Site effects at P-Torres site were determined [4] to have a first 

peak at 0.68 Hz, with amplitude 7. The profile shown in Figure 3(b) has a one-way travel time of 

0.055 s, implying a resonant frequency larger than 4.5 Hz. Clearly, the refraction measurements 

are unable to sample the sedimentary column responsible for the local amplification.

Table 1 gives the 1D profiles determined at the 5 sites where active source refraction 

measurements were made. The sampled thickness is small in all cases, and the Vs of the deepest 
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layers are small. The dominant frequencies computed for S-wave incidence on the profiles of 

Table 1 are larger than observed resonant frequencies at those sites [4]. The refraction 

experiments did not sample the soil column that governs local site effects at Tecoman, even if the 

explored depth is not far from 30 m. In several building codes, site effects are assigned based on 

average Vs for the top 30 m [13]. Our results show that this may not be adequate to correctly 

predict local amplification.

Consider now the results from the ambient vibration measurements using the P-wave 

refraction profile array. Figure 4 shows the correlation coefficients (see [7, 8], where these 

coefficients are defined as average crosscorrelation between station pairs normalized by the 

average autocorrelation) as a function of distance and frequency. For each distance, we observe 

the oscillations as a function of frequency that characterizes the Bessel function. The maximum 

values for the correlation coefficients occur at 2 Hz. For smaller frequencies, the geophones 

cannot record ambient vibration reliably and correlation values drop. At the other end, good 

results are obtained up to 10 Hz. The smaller distances are more reliable at higher frequencies. 

For the larger distances, correlations coefficients come from a smaller number of station pairs.

The correlation coefficients were inverted to obtain a phase velocity dispersion curve at each 

measurement site. The results are shown in Figure 5. There are not large differences among the 

five sites. Shear-wave velocity at the surface is about 200 m/s at all sites. The largest phase 

velocities are larger than 600 m/s at 2 Hz, significantly larger than the values determined from 

active source refraction. The SPAC analysis of ambient vibration recorded with the P-wave 

refraction profile is able to see deeper in the ground than seismic refraction using hammer blows

as a source due to their small energy. Hammer blows could not be well recorded by the whole 

geophone line. In contrast, the SPAC method is able to recover useful signal from the correlation 

of all station pairs, including the more distant.
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The dispersion curves in Figure 5 make it clear that there is a large impedance contrast 

under Tecoman. However, it is not possible to identify a phase velocity for the basement below 

the sediments. This is clearly indicated by the results of the inversion of the phase velocity 

dispersion curves. The resulting model is shown in Figure 6. The velocity for the underlying half-

space at each site is different as it is not constrained from the data in Figure 5. In contrast, the 

structure of the soft sediments is. The depth of investigation varies from site to site but is 

significantly larger than the depth reached with active source. However, the final layer for each 

model is imposed in the inversion process. Given that local amplification results from the 

impedance contrast between sediments and basement, the models in Figure 6 are not able to 

constrain site effects.

Consider now the results obtained from the application of the SPAC method to the 

microtremor recorded using the Guralp seismometers. These results are shown in Figure 7 for 

each station pair. The five plots where the correlation coefficients are zero include records at 

station BOMB. This station failed to lock its internal clock on the GPS signal and it had not 

common time with the other four. The other stations show good correlation between 0.15 and 1 

Hz. On the low frequency end, correlation is lost at about 0.15 Hz for all station pairs. This was 

also observed in [14] and was ascribed to the limitations imposed by a temporal deployment. On 

the high frequency end, correlation decreases with increasing distance between stations, as 

expected.

The correlation coefficients shown in Figure 7 were inverted and a phase velocity 

dispersion curve was obtained. The result is shown in Figure 8, together with the dispersion 

curves determined earlier. The Guralp array constrains phase velocity in a very limited frequency 

range, between 0.2 and 1 Hz. It succeeds, however, in determining the phase velocity 

corresponding to the basement, as shown in Figure 8 by the stars tending to a fixed value of 2.7 
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km/s at low frequencies. There is a large gap between the phase velocities determined from the 

Guralp measurements and those determined from the exploration seismograph data. An 

intermediate size array would have been needed to fill the gap between the 92 m maximum inter 

station distance for the geophone deployment and 620 m, the smallest distance between Guralp 

seismometers.

4. Comparison between computed and observed amplification

We inverted the dispersion curves shown in Figure 8, assuming continuity between the 

Gurlap determined dispersion curve and those derived from the refraction seismograph data. The 

results are very similar to those shown in Figure 6, except that now it is possible to assign a well 

determined basement at the bottom of each profile. We used those profiles to compute site 

amplification assuming vertical incidence of S-waves. The result is shown in Figure 9. Two 

significant improvements are obtained relative to the site amplification that would be computed 

for the profiles of Table 1. The first is that the resonance frequency decreases significantly, going 

below 1 Hz at most of the sites, in agreement with the observations [4]. The second is that the 

amplitude of the amplification increases. The shear-wave velocity determined for the basement is 

3 km/s, increasing the impedance contrast with the surficial layers and thereby increasing 

maximum amplification. The transfer functions in Figure 9 are not reliable for larger frequencies 

because attenuation is not included but their fundamental peaks compare reasonably well with 

observed amplification at those sites [4].
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5. Conclusions

We have presented the results of a campaign to explore subsoil in Tecoman, Mexico. The 

objective was to determine the subsoil structure required to model site effects expected during 

future earthquakes in the region and complements a previous study which addressed estimation of 

local amplification. Refraction experiments were carried at five sites within the city. Both P- and 

S-wave profiles were measured. These data were processed using traditional first break analysis. 

In addition, ambient vibration was recorded using the P-wave refraction deployment and using 

six autonomous accelerographs, coupled to broad band sensors. Ambient vibration measurements 

were processed using the extension of the SPAC method to station pairs.

Refraction tests were penalized from the small power that may be transmitted to the soil 

by hammer blows (other sources are generally illegal, impractical or too expensive for 

microzonation purposes). Soft soils, which amplify the most ground motion during earthquakes, 

usually have small Q values, i.e., large attenuation of seismic waves. Attenuation affects most 

high frequency waves, those that can be generated in refraction surveys. Thus, the size of the 

refraction line (92 m for P-waves and 46 m for S-waves) could not be exploited and the effective 

length of the geophone lines was usually only half. This limited the depth for which results could 

be obtained to 23 m. The travel time for the resulting profiles showed that their thickness was too 

small to explain the dominant frequencies observed in our companion study. Thus, even if the 

depth of exploration reached almost 30 m and Vs30 values could have been determined, they 

would not have been representative of the soil deposits responsible for local site effects.

The analysis of ambient vibration records from the P-wave refraction deployment using 

the SPAC method produced phase velocity dispersion curves that were reliable between 2 and 10 

Hz. The observed phase velocities indicated that ambient noise measurements were able to reach 
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larger depths than active refraction. Using ground vibration as the signal, we were able to take 

advantage of the whole geophone deployment because noise could be correlated even between 

the more distant geophone pairs. The phase velocity dispersion curves showed small differences 

among the five investigated sites. Those curves showed clearly that a significant impedance 

contrast exists at the base of the soft sediments, however, they gave no information on the shear-

wave velocity of the basement. This is to be expected [1]. The large impedance contrast 

efficiently traps the energy within the sediments and surface waves carry little information of the 

basement. An additional experiment was carried out to remedy this.

We analysed ambient vibration recorded for 8 hours at six accelerographs coupled to 

broad band seismometers. The distances between station ranged from 620 m to 2.8 km. The 

results of the SPAC analysis of these data allowed us to constrain the shear-wave velocity of the 

basement. However, there remained a large gap between the results from these measurements and 

those made with the refraction seismograph. We combined the phase velocity estimates from the 

broad band data with those from the small refraction profiles. We believe that the 1D profiles 

obtained from the inversion of the combined dispersion curves are representative of subsoil 

ground conditions in Tecoman. A significant point is that Poisson ratios for the sediments are 

significantly larger than 0.25, otherwise it is impossible to obtain a good fit between observed 

and computed phase velocity dispersion. Poisson ratios were obtained from the refraction tests, 

that allowed to determine independently P and S velocities for the shallower sediments.

Computed 1D transfer functions for these profiles show a good agreement with the observed site 

amplification reported in our companion paper [4]. The shear-wave velocity of the basement is 

large (3 km/s), making a large impedance contrast with the sediments and producing sizeable 

amplification factors (close to a factor of 10) close to those observed. When we accept that Vs30 
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adequately characterizes site response, we implicitly assume a Vs value of 750 m/s for the 

underlying basement, which is clearly too small in our case.

The case of Tecoman is somewhat surprising. In [4] it was shown that site amplification 

had to be carefully evaluated and that some measurements missed the fundamental resonance 

peak (and a higher mode could have been considered as the fundamental). We have shown that 

even if the soil structure is quite simple, it is not easy to estimate the properties of the basement, 

which are required to correctly estimate maximum amplification. The case of Tecoman illustrates 

that, even when subsoil structure is not complex, different data must be crossed to reliably 

constrain site effects.
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Figure captions

Figure 1. Location map of Colima and Tecoman in Mexico. Subduction zone is shown as the 

solid line, parallel to the coast, with the solid triangles. The solid rectangle shows the location of 

Tecoman city. The solid triangle indicates the location of Colima’s volcanoe.

Figure 2. Location of the five sites in Tecoman where refraction measurements were made (open 

stars). Also shows are the six sites where ambient vibration was measured using broad band 

seismometers (solid circles).

Figure 3. (a) An example of the S-wave refraction seismic section recorded at Tecoman. The 

records shown correspond to P-Torres site. (b) 2D S-wave subsoil structure derived from the 

inversion of first break S-wave arrivals at P-Torres site. Velocity values are given in m/s.

Figure 4. Correlation coefficients as a function of frequency and distance computed from ambient 

noise measurements using the P-wave refraction deployment at BOMB site. The result at a given 

distance was obtained as the average of all possible geophone pairs at that distance. These results 

correspond to the average for five 60 sec recorded windows.

Figure 5. Phase velocity dispersion curves obtained from the correlation coefficients computed 

from ambient noise measurements using the P-wave refraction deployment at each of the five 

sites where refraction measurements were made. Shear-wave velocities attain values larger than 

600 m/s.
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Figure 6. Shear-wave velocity profiles determined from the inversion of the dispersion curves 

shown in the previous figure.

Figure 7. Correlation coefficients from ambient vibration recorded with the six station array of 

accelerographs coupled to broad band seismometers. Each diagram corresponds to a station pair 

separated the distance (in km) indicated. The five diagrams which show zero correlation 

correspond to correlation using records at site BOMB, which did not have a common time base 

with the other five instruments.

Figure 8. Final phase velocity dispersion curves obtained for Tecoman. The dispersion curves 

shown in Figure 5 are plotted together with the dispersion curve derived from the inversion of the 

correlation coefficients computed for the Guralp array.

Figure 9. Computed soil amplification for vertical incidence of S-waves on the five soil profiles 

determined at Tecoman from the inversion of phase velocity dispersion shown in the previous 

figure.
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Table 1. Soil profiles obtained from first-break analysis of the refraction tests

Thickness   [m] S-wave velocity   [m/s] P-wave velocity   [m/s]

P-Torres

3.0 279 505

4.0 363 660

12.0 403 740

BOMB

0.8 90 204

5.7 220 205

6.5 283 510

C-VERDE

4.0 256 466

8.5 377 698

2.5 450 846

S-HELENA

4.0 258 595

9.0 334 790

3.0 483 920

UDEP

3.0 300 570

7.0 338 660

11.0 404 750
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